

A standardized benchmark for humanoid wholebody manipulation and loco-manipulation

Will Thibault, Francisco Javier Andrade Chavez, Katja Mombaur Canada Excellence Research Chair in Human-Centred Robotics and Machine Intelligence Systems Design Engineering & Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Canada

Abstract

- EUROBENCH aims at providing a unified benchmarking framework for robotic systems in Europe
 - Two benchmarking facilities for academia and industry
 - REEM-C available for humanoid robotics benchmarking
- Benchmarking allows for comparison of performance between robots and control methods
- Why benchmark humanoid robot manipulation?
- Quantify performance of large object manipulation
- Test kinematic workspace and stability limitations

	Kesuits		
	KPI	Separate upper and lower body control	Whole-body control
	Average time (s)	52.96	62.41
	2.5% placement accuracy	60%	100%
_	5% placement accuracy	100%	100%
	Cost of operation		

Doculto

- Easy and affordable to replicate
- Inspired by need from real world pick and place scenarios

(Amps s/kg)	10802.08	20245.68
Mechanical work (J)	2585.25	561.69

Initial box manipulation scenario

Purpose:

Inform the development of a whole-body manipulation benchmark for humanoid robots

Study:

- Pick box from middle shelf and place it on top shelf
- Using Uwaterloo's REEM-C "Seven"
- Two different motion generation and control techniques
 - Separate upper and lower body control
 - Whole-body control

Proposed benchmarks

Whole-body manipulation test bed and protocols:

- 1. Predefined frontal placement
 - 2. Predefined lateral placement
- 3. Predefined combined placement
- 4. Variable combined placement

Pick and carry test bed and protocols:

Whole-body control:

Bubble wrap roll

Milk crate

Key performance indicators:

- Success rate
- Placement error
- Maximum weight
- Maximum height¹
- Minimum height¹
- Mechanical work
- Cost of operation
- Battery consumed
- Human-likeness
- Cautious handling factor
- Collision occurrence
- Picking time²
- Maximum walking speed²

1 – Whole-body manipulation only 2 – Pick and carry only